CVE-2025-71079 is a low severity vulnerability with a CVSS score of 0.0. No known exploits currently, and patches are available.
Very low probability of exploitation
EPSS predicts the probability of exploitation in the next 30 days based on real-world threat data, complementing CVSS severity scores with actual risk assessment.
In the Linux kernel, the following vulnerability has been resolved:
net: nfc: fix deadlock between nfc_unregister_device and rfkill_fop_write
A deadlock can occur between nfc_unregister_device() and rfkill_fop_write() due to lock ordering inversion between device_lock and rfkill_global_mutex.
The problematic lock order is:
Thread A (rfkill_fop_write): rfkill_fop_write() mutex_lock(&rfkill_global_mutex) rfkill_set_block() nfc_rfkill_set_block() nfc_dev_down() device_lock(&dev->dev) <- waits for device_lock
Thread B (nfc_unregister_device): nfc_unregister_device() device_lock(&dev->dev) rfkill_unregister() mutex_lock(&rfkill_global_mutex) <- waits for rfkill_global_mutex
This creates a classic ABBA deadlock scenario.
Fix this by moving rfkill_unregister() and rfkill_destroy() outside the device_lock critical section. Store the rfkill pointer in a local variable before releasing the lock, then call rfkill_unregister() after releasing device_lock.
This change is safe because rfkill_fop_write() holds rfkill_global_mutex while calling the rfkill callbacks, and rfkill_unregister() also acquires rfkill_global_mutex before cleanup. Therefore, rfkill_unregister() will wait for any ongoing callback to complete before proceeding, and device_del() is only called after rfkill_unregister() returns, preventing any use-after-free.
The similar lock ordering in nfc_register_device() (device_lock -> rfkill_global_mutex via rfkill_register) is safe because during registration the device is not yet in rfkill_list, so no concurrent rfkill operations can occur on this device.
Please cite this page when referencing data from Strobes VI. Proper attribution helps support our vulnerability intelligence research.