CVE-2025-71069 is a low severity vulnerability with a CVSS score of 0.0. No known exploits currently, and patches are available.
Very low probability of exploitation
EPSS predicts the probability of exploitation in the next 30 days based on real-world threat data, complementing CVSS severity scores with actual risk assessment.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: invalidate dentry cache on failed whiteout creation
F2FS can mount filesystems with corrupted directory depth values that get runtime-clamped to MAX_DIR_HASH_DEPTH. When RENAME_WHITEOUT operations are performed on such directories, f2fs_rename performs directory modifications (updating target entry and deleting source entry) before attempting to add the whiteout entry via f2fs_add_link.
If f2fs_add_link fails due to the corrupted directory structure, the function returns an error to VFS, but the partial directory modifications have already been committed to disk. VFS assumes the entire rename operation failed and does not update the dentry cache, leaving stale mappings.
In the error path, VFS does not call d_move() to update the dentry cache. This results in new_dentry still pointing to the old inode (new_inode) which has already had its i_nlink decremented to zero. The stale cache causes subsequent operations to incorrectly reference the freed inode.
This causes subsequent operations to use cached dentry information that no longer matches the on-disk state. When a second rename targets the same entry, VFS attempts to decrement i_nlink on the stale inode, which may already have i_nlink=0, triggering a WARNING in drop_nlink().
Example sequence:
First rename (RENAME_WHITEOUT): file2 → file1
Second rename: file3 → file1
Fix this by explicitly invalidating old_dentry and new_dentry when f2fs_add_link fails during whiteout creation. This forces VFS to refresh from disk on subsequent operations, ensuring cache consistency even when the rename partially succeeds.
Reproducer:
Please cite this page when referencing data from Strobes VI. Proper attribution helps support our vulnerability intelligence research.